Source code for skactiveml.pool._expected_model_output_change

import numpy as np
from sklearn import clone
from sklearn.utils.validation import check_array, _check_n_features
from sklearn.metrics import mean_squared_error

from skactiveml.base import (
    ProbabilisticRegressor,
    SingleAnnotatorPoolQueryStrategy,
)
from skactiveml.pool.utils import _update_reg, _conditional_expect
from skactiveml.utils import (
    check_type,
    simple_batch,
    MISSING_LABEL,
    _check_callable,
    is_unlabeled,
)


[docs]class ExpectedModelOutputChange(SingleAnnotatorPoolQueryStrategy): """Regression based Expected Model Output Change (EMOC) This class implements an "Expected Model Output Change" (EMOC) based approach for regression [1]_, where samples are queried that change the output of the regression model the most. Parameters ---------- integration_dict : dict, default=None Dictionary for integration arguments, i.e. `integration_method` etc., used for calculating the expected `y` value for the candidate samples. For details see method `skactiveml.pool.utils._conditional_expect`. The default `integration_method` is `assume_linear`. loss : callable, default=None The loss for predicting a target value instead of the true value. Takes in the predicted values of an evaluation set and the true values of the evaluation set and returns the error, a scalar value. The default loss is `sklearn.metrics.mean_squared_error` an alternative might be `sklearn.metrics.mean_absolute_error`. missing_label : scalar or string or np.nan or None, default=np.nan Value to represent a missing label. random_state : int or np.random.RandomState or None, default=None Random state for candidate selection. References ---------- .. [1] Christoph Kaeding, Erik Rodner, Alexander Freytag, Oliver Mothes, Oliver, Bjoern Barz and Joachim Denzler. Active Learning for Regression Tasks with Expected Model Output Change, BMVC, page 1-15, 2018. """ def __init__( self, integration_dict=None, loss=None, missing_label=MISSING_LABEL, random_state=None, ): super().__init__( random_state=random_state, missing_label=missing_label ) self.loss = loss self.integration_dict = integration_dict
[docs] def query( self, X, y, reg, fit_reg=True, sample_weight=None, candidates=None, X_eval=None, batch_size=1, return_utilities=False, ): """Determines for which candidate samples labels are to be queried. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data set, usually complete, i.e., including the labeled and unlabeled samples. y : array-like of shape (n_samples,) Labels of the training data set (possibly including unlabeled ones indicated by `self.missing_label`). reg : ProbabilisticRegressor Predicts the output and the target distribution. fit_reg : bool, default=True Defines whether the regressor should be fitted on `X`, `y`, and `sample_weight`. sample_weight : array-like of shape (n_samples,), default=None Weights of training samples in `X`. candidates : None or array-like of shape (n_candidates), dtype=int or \ array-like of shape (n_candidates, n_features), default=None - If `candidates` is `None`, the unlabeled samples from `(X,y)` are considered as `candidates`. - If `candidates` is of shape `(n_candidates,)` and of type `int`, `candidates` is considered as the indices of the samples in `(X,y)`. - If `candidates` is of shape `(n_candidates, *)`, the candidate samples are directly given in `candidates` (not necessarily contained in `X`). X_eval : array-like of shape (n_eval_samples, n_features), default=None Evaluation data set that is used for estimating the probability distribution of the feature space. In the referenced paper it is proposed to use the unlabeled data, i.e., `X_eval=X[is_unlabeled(y)]`. batch_size : int, default=1 The number of samples to be selected in one AL cycle. return_utilities : bool, default=False If true, also return the utilities based on the query strategy. Returns ------- query_indices : numpy.ndarray of shape (batch_size,) The query indices indicate for which candidate sample a label is to be queried, e.g., `query_indices[0]` indicates the first selected sample. - If `candidates` is `None` or of shape `(n_candidates,)`, the indexing refers to the samples in `X`. - If `candidates` is of shape `(n_candidates, n_features)`, the indexing refers to the samples in `candidates`. utilities : numpy.ndarray of shape (batch_size, n_samples) or \ numpy.ndarray of shape (batch_size, n_candidates) The utilities of samples after each selected sample of the batch, e.g., `utilities[0]` indicates the utilities used for selecting the first sample (with index `query_indices[0]`) of the batch. Utilities for labeled samples will be set to np.nan. - If `candidates` is `None` or of shape `(n_candidates,)`, the indexing refers to the samples in `X`. - If `candidates` is of shape `(n_candidates, n_features)`, the indexing refers to the samples in `candidates`. """ X, y, candidates, batch_size, return_utilities = self._validate_data( X, y, candidates, batch_size, return_utilities, reset=True ) check_type(reg, "reg", ProbabilisticRegressor) if self.integration_dict is None: self.integration_dict = {"method": "assume_linear"} check_type(self.integration_dict, "self.integration_dict", dict) if X_eval is None: X_eval = X[is_unlabeled(y, missing_label=self.missing_label_)] if len(X_eval) == 0: raise ValueError( "The training data contains no unlabeled " "data. This can be fixed by setting the " "evaluation set manually, e.g. set " "`X_eval=X`." ) else: X_eval = check_array(X_eval) _check_n_features(self, X_eval, reset=False) check_type(fit_reg, "fit_reg", bool) if self.loss is None: self.loss = mean_squared_error _check_callable(self.loss, "self.loss", n_positional_parameters=2) X_cand, mapping = self._transform_candidates(candidates, X, y) if fit_reg: if sample_weight is None: reg = clone(reg).fit(X, y) else: reg = clone(reg).fit(X, y, sample_weight) y_pred = reg.predict(X_eval) def _model_output_change(idx, x_cand, y_pot): reg_new = _update_reg( reg, X, y, sample_weight=sample_weight, y_update=y_pot, idx_update=idx, X_update=x_cand, mapping=mapping, ) y_pred_new = reg_new.predict(X_eval) return self.loss(y_pred, y_pred_new) change = _conditional_expect( X_cand, _model_output_change, reg, random_state=self.random_state_, **self.integration_dict, ) if mapping is None: utilities = change else: utilities = np.full(len(X), np.nan) utilities[mapping] = change return simple_batch( utilities, batch_size=batch_size, random_state=self.random_state_, return_utilities=return_utilities, )