Source code for skactiveml.pool._information_gain_maximization

import numpy as np
from sklearn import clone

from skactiveml.base import (
    SingleAnnotatorPoolQueryStrategy,
    ProbabilisticRegressor,
)

from skactiveml.pool.utils import (
    _update_reg,
    _conditional_expect,
    _cross_entropy,
)
from skactiveml.utils import (
    check_type,
    simple_batch,
    MISSING_LABEL,
    is_unlabeled,
)


[docs]class KLDivergenceMaximization(SingleAnnotatorPoolQueryStrategy): """Regression based Kullback-Leibler Divergence Maximization This class implements a query [1]_, which selects those samples that maximize the expected Kullback-Leibler divergence, where it is assumed that the target probabilities for different samples are independent. Parameters ---------- integration_dict_target_val : dict, default=None Dictionary for integration arguments, i.e. `integration method` etc., used for calculating the expected `y` value for the candidate samples. For details see method `skactiveml.pool.utils._conditional_expect`. integration_dict_cross_entropy : dict, default=None Dictionary for integration arguments, i.e. `integration method` etc., used for calculating the cross entropy between the updated conditional estimator by the `X_cand` value and the old conditional estimator. For details see method `conditional_expect`. missing_label : scalar or string or np.nan or None, default=np.nan Value to represent a missing label. random_state : int or RandomState instance, default=None Random state for candidate selection. References ---------- .. [1] D. Elreedy, A. F. Atiya, and S. I. Shaheen. A Novel Active Learning Regression Framework for Balancing the Exploration-Exploitation Trade-Off. Entropy, 21(7):651, 2019. """ def __init__( self, integration_dict_target_val=None, integration_dict_cross_entropy=None, missing_label=MISSING_LABEL, random_state=None, ): super().__init__( random_state=random_state, missing_label=missing_label ) self.integration_dict_target_val = integration_dict_target_val self.integration_dict_cross_entropy = integration_dict_cross_entropy
[docs] def query( self, X, y, reg, fit_reg=True, sample_weight=None, candidates=None, batch_size=1, return_utilities=False, ): """Determines for which candidate samples labels are to be queried. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data set, usually complete, i.e. including the labeled and unlabeled samples. y : array-like of shape (n_samples) Labels of the training data set (possibly including unlabeled ones indicated by `self.missing_label`). reg : skactiveml.base.ProbabilisticRegressor Predicts the entropy and the cross entropy and the potential y-values for the candidate samples. fit_reg : bool, default=True Defines whether the regressor should be fitted on `X`, `y`, and `sample_weight`. sample_weight : array-like of shape (n_samples,), default=None Weights of training samples in `X`. candidates : None or array-like of shape (n_candidates), dtype=int or \ array-like of shape (n_candidates, n_features), default=None - If `candidates` is `None`, the unlabeled samples from `(X,y)` are considered as `candidates`. - If `candidates` is of shape `(n_candidates,)` and of type `int`, `candidates` is considered as the indices of the samples in `(X,y)`. - If `candidates` is of shape `(n_candidates, *)`, the candidate samples are directly given in `candidates` (not necessarily contained in `X`). This is not supported by all query strategies. batch_size : int, default=1 The number of samples to be selected in one AL cycle. return_utilities : bool, default=False If `True`, also return the utilities based on the query strategy. Returns ------- query_indices : numpy.ndarray of shape (batch_size) The query indices indicate for which candidate sample a label is to be queried, e.g., `query_indices[0]` indicates the first selected sample. - If `candidates` is `None` or of shape `(n_candidates,)`, the indexing refers to the samples in `X`. - If `candidates` is of shape `(n_candidates, n_features)`, the indexing refers to the samples in `candidates`. utilities : numpy.ndarray of shape (batch_size, n_samples) The utilities of samples after each selected sample of the batch, e.g., `utilities[0]` indicates the utilities used for selecting the first sample (with index `query_indices[0]`) of the batch. Utilities for labeled samples will be set to np.nan. - If `candidates` is `None`, the indexing refers to the samples in `X`. - If `candidates` is of shape `(n_candidates,)` and of type `int`, `utilities` refers to the samples in `X`. - If `candidates` is of shape `(n_candidates, *)`, `utilities` refers to the indexing in `candidates`. """ X, y, candidates, batch_size, return_utilities = self._validate_data( X, y, candidates, batch_size, return_utilities, reset=True ) check_type(reg, "reg", ProbabilisticRegressor) check_type(fit_reg, "fit_reg", bool) X_eval = X[is_unlabeled(y, missing_label=self.missing_label_)] if len(X_eval) == 0: raise ValueError( "The training data contains no unlabeled " "data." ) if self.integration_dict_target_val is None: self.integration_dict_target_val = {"method": "assume_linear"} if self.integration_dict_cross_entropy is None: self.integration_dict_cross_entropy = { "method": "gauss_hermite", "n_integration_samples": 10, } check_type( self.integration_dict_target_val, "self.integration_dict", dict ) check_type( self.integration_dict_cross_entropy, "self.integration_dict", dict ) X_cand, mapping = self._transform_candidates(candidates, X, y) if fit_reg: if sample_weight is None: reg = clone(reg).fit(X, y) else: reg = clone(reg).fit(X, y, sample_weight) utilities_cand = self._kullback_leibler_divergence( X_eval, X_cand, mapping, reg, X, y, sample_weight=sample_weight ) if mapping is None: utilities = utilities_cand else: utilities = np.full(len(X), np.nan) utilities[mapping] = utilities_cand return simple_batch( utilities, self.random_state_, batch_size=batch_size, return_utilities=return_utilities, )
def _kullback_leibler_divergence( self, X_eval, X_cand, mapping, reg, X, y, sample_weight=None ): """Calculates the expected Kullback-Leibler divergence over the evaluation set if each candidate sample where to be labeled. Parameters ---------- X_eval : array-like of shape (n_samples, n_features) The samples where the information gain should be evaluated. X_cand : array-like of shape (n_candidate_samples, n_features) The candidate samples that determine the information gain. mapping : array-like of shape (n_candidate_samples,) or None A mapping between `X_cand` and `X` if it exists. reg: ProbabilisticRegressor Predicts the entropy, predicts values. X : array-like of shape (n_samples, n_features) Training data set, usually complete, i.e., including the labeled and unlabeled samples. y : array-like of shape (n_samples,) Labels of the training data set (possibly including unlabeled ones indicated by `self.missing_label`). sample_weight: array-like of shape (n_samples,), default=None Weights of training samples in `X`. Returns ------- kl_div : numpy.ndarray of shape (n_candidate_samples,) The calculated expected Kullback-Leibler divergence. """ def new_kl_divergence(idx, x_cand, y_pot): reg_new = _update_reg( reg, X, y, sample_weight=sample_weight, y_update=y_pot, idx_update=idx, X_update=x_cand, mapping=mapping, ) entropy_post = np.sum( reg_new.predict(X_eval, return_entropy=True)[1] ) cross_ent = np.sum( _cross_entropy( X_eval, reg_new, reg, integration_dict=self.integration_dict_cross_entropy, random_state=self.random_state_, ) ) return cross_ent - entropy_post kl_div = _conditional_expect( X_cand, new_kl_divergence, reg, random_state=self.random_state_, **self.integration_dict_target_val, ) return kl_div