Note
Go to the end to download the full example code.
Improved Greedy Sampling (GSi)#
Note
The generated animation can be found at the bottom of the page.
Google Colab Note: If the notebook fails to run after installing the
needed packages, try to restart the runtime (Ctrl + M) under
Runtime -> Restart session.
Notebook Dependencies
Uncomment the following cell to install all dependencies for this
tutorial.
# !pip install scikit-activeml
import numpy as np
from matplotlib import pyplot as plt, animation
from scipy.stats import uniform
from skactiveml.utils import MISSING_LABEL, labeled_indices, is_labeled
from skactiveml.regressor import NICKernelRegressor
from skactiveml.pool import GreedySamplingTarget
# Set a fixed random state for reproducibility.
random_state = np.random.RandomState(0)
def true_function(X_):
"""Compute the true underlying function."""
return (X_**3 + 2 * X_**2 + X_ - 1).flatten()
# Generate samples.
n_samples = 100
X = np.concatenate(
[
uniform.rvs(0, 1.5, 9 * n_samples // 10, random_state=random_state),
uniform.rvs(1.5, 0.5, n_samples // 10, random_state=random_state),
]
).reshape(-1, 1)
# Define noise: higher noise for X < 1 and lower otherwise.
noise = np.vectorize(
lambda x: random_state.rand() * 1.5 if x < 1 else random_state.rand() * 0.5
)
# Build the dataset.
y_true = true_function(X) + noise(X).flatten()
y = np.full(shape=y_true.shape, fill_value=MISSING_LABEL)
X_test = np.linspace(0, 2, num=100).reshape(-1, 1)
# Initialise the regressor.
reg = NICKernelRegressor(random_state=random_state, metric_dict={'gamma': 15.0})
# Initialise the query strategy.
qs = GreedySamplingTarget(method='GSi')
# Prepare the plotting area.
fig, (ax_1, ax_2) = plt.subplots(2, 1, sharex=True)
artists = []
# Active learning cycle.
n_cycles = 20
for c in range(n_cycles):
# Fit the regressor using the current labels.
reg.fit(X, y)
# Query the next sample(s).
query_idx = qs.query(X=X, y=y, reg=reg)
# Record current plot elements.
coll_old = list(ax_1.collections) + list(ax_2.collections)
title = ax_1.text(
0.5, 1.05,
f"Prediction after acquiring {c} labels",
size=plt.rcParams["axes.titlesize"],
ha="center",
transform=ax_1.transAxes,
)
# Compute utility values for the test candidates.
_, utilities_test = qs.query(X=X, y=y, reg=reg, candidates=X_test, return_utilities=True)
utilities_test = (utilities_test - utilities_test.min()).flatten()
if np.any(utilities_test != utilities_test[0]):
utilities_test /= utilities_test.max()
# Plot utility information on the second axis.
(utility_line,) = ax_2.plot(X_test, utilities_test, c="green")
utility_fill = plt.fill_between(X_test.flatten(), utilities_test, color="green", alpha=0.3)
# Plot the samples and their labels.
is_lbld = is_labeled(y)
ax_1.scatter(X[~is_lbld], y_true[~is_lbld], c="lightblue")
ax_1.scatter(X[is_lbld], y[is_lbld], c="orange")
# Predict and plot the regressor's output.
y_pred = reg.predict(X_test)
(prediction_line,) = ax_1.plot(X_test, y_pred, c="black")
# Capture new plot elements.
coll_new = list(ax_1.collections) + list(ax_2.collections)
coll_new.append(title)
artists.append(
[x for x in coll_new if (x not in coll_old)]
+ [utility_line, utility_fill, prediction_line]
)
# Update labels for the queried sample.
y[query_idx] = y_true[query_idx]
# Create an animation from the collected frames.
ani = animation.ArtistAnimation(fig, artists, interval=1000, blit=True)

References:
The implementation of this strategy is based on Wu et al.1.
- 1
Dongrui Wu, Chin-Teng Lin, and Jian Huang. Active Learning for Regression using Greedy Sampling. Inf. Sci., 474:90–105, 2019.
Total running time of the script: (0 minutes 6.476 seconds)