Note
Go to the end to download the full example code.
Density-Diversity-Distribution-Distance Sampling#
Note
The generated animation can be found at the bottom of the page.
Google Colab Note: If the notebook fails to run after installing the
needed packages, try to restart the runtime (Ctrl + M) under
Runtime -> Restart session.
Notebook Dependencies
Uncomment the following cell to install all dependencies for this
tutorial.
# !pip install scikit-activeml
import numpy as np
from matplotlib import pyplot as plt, animation
from sklearn.datasets import make_blobs
from skactiveml.utils import MISSING_LABEL, labeled_indices, unlabeled_indices
from skactiveml.visualization import plot_utilities, plot_decision_boundary
from skactiveml.classifier import MixtureModelClassifier
from skactiveml.pool import FourDs
from sklearn.mixture import GaussianMixture
random_state = np.random.RandomState(0)
# Build a dataset.
X, y_true = make_blobs(n_samples=200, n_features=2,
centers=[[0, 1], [-3, .5], [-1, -1], [2, 1], [1, -.5]],
cluster_std=.7, random_state=random_state)
y_true = y_true % 2
y = np.full(shape=y_true.shape, fill_value=MISSING_LABEL)
# Initialise the classifier.
clf = MixtureModelClassifier(classes=[0, 1], mixture_model=GaussianMixture(n_components=5))
# Initialise the query strategy.
qs = FourDs()
# Preparation for plotting.
fig, ax = plt.subplots()
feature_bound = [[min(X[:, 0]), min(X[:, 1])], [max(X[:, 0]), max(X[:, 1])]]
artists = []
# The active learning cycle:
n_cycles = 20
for c in range(n_cycles):
# Fit the classifier.
clf.fit(X, y)
# Get labeled instances.
X_labeled = X[labeled_indices(y)]
# Query the next instance/s.
query_idx = qs.query(X=X, y=y, clf=clf)
# Plot the labeled data.
coll_old = list(ax.collections)
title = ax.text(
0.5, 1.05, f"Decision boundary after acquring {c} labels",
size=plt.rcParams["axes.titlesize"], ha="center",
transform=ax.transAxes
)
ax = plot_utilities(qs, X=X, y=y, clf=clf,
candidates=None, res=25,
feature_bound=feature_bound, ax=ax)
ax.scatter(X[:, 0], X[:, 1], c=y_true, cmap="coolwarm", marker=".",
zorder=2)
ax.scatter(X_labeled[:, 0], X_labeled[:, 1], c="grey", alpha=.8,
marker=".", s=300)
ax = plot_decision_boundary(clf, feature_bound, ax=ax)
coll_new = list(ax.collections)
coll_new.append(title)
artists.append([x for x in coll_new if (x not in coll_old)])
# Label the queried instances.
y[query_idx] = y_true[query_idx]
ani = animation.ArtistAnimation(fig, artists, interval=1000, blit=True)

References:
The implementation of this strategy is based on Reitmaier and Sick1.
- 1
Tobias Reitmaier and Bernhard Sick. Let us know your decision: pool-based active training of a generative classifier with the selection strategy 4ds. Information Sciences, 230:106–131, 2013.
Total running time of the script: (0 minutes 6.748 seconds)