Note
Go to the end to download the full example code.
Monte-Carlo EER with Misclassification-Loss#
Note
The generated animation can be found at the bottom of the page.
Google Colab Note: If the notebook fails to run after installing the
needed packages, try to restart the runtime (Ctrl + M) under
Runtime -> Restart session.
Notebook Dependencies
Uncomment the following cell to install all dependencies for this
tutorial.
# !pip install scikit-activeml
import numpy as np
from matplotlib import pyplot as plt, animation
from sklearn.datasets import make_blobs
from skactiveml.utils import MISSING_LABEL, labeled_indices, unlabeled_indices
from skactiveml.visualization import plot_utilities, plot_decision_boundary
from skactiveml.classifier import ParzenWindowClassifier
from skactiveml.pool import MonteCarloEER
random_state = np.random.RandomState(0)
# Build a dataset.
X, y_true = make_blobs(n_samples=200, n_features=2,
centers=[[0, 1], [-3, .5], [-1, -1], [2, 1], [1, -.5]],
cluster_std=.7, random_state=random_state)
y_true = y_true % 2
y = np.full(shape=y_true.shape, fill_value=MISSING_LABEL)
# Initialise the classifier.
clf = ParzenWindowClassifier(classes=[0, 1], random_state=random_state)
# Initialise the query strategy.
qs = MonteCarloEER(method='misclassification_loss')
# Preparation for plotting.
fig, ax = plt.subplots()
feature_bound = [[min(X[:, 0]), min(X[:, 1])], [max(X[:, 0]), max(X[:, 1])]]
artists = []
# The active learning cycle:
n_cycles = 20
for c in range(n_cycles):
# Fit the classifier.
clf.fit(X, y)
# Get labeled instances.
X_labeled = X[labeled_indices(y)]
# Query the next instance/s.
query_idx = qs.query(X=X, y=y, clf=clf, ignore_partial_fit=True)
# Plot the labeled data.
coll_old = list(ax.collections)
title = ax.text(
0.5, 1.05, f"Decision boundary after acquring {c} labels",
size=plt.rcParams["axes.titlesize"], ha="center",
transform=ax.transAxes
)
ax = plot_utilities(qs, X=X, y=y, clf=clf, ignore_partial_fit=True,
candidates=None, res=25,
feature_bound=feature_bound, ax=ax)
ax.scatter(X[:, 0], X[:, 1], c=y_true, cmap="coolwarm", marker=".",
zorder=2)
ax.scatter(X_labeled[:, 0], X_labeled[:, 1], c="grey", alpha=.8,
marker=".", s=300)
ax = plot_decision_boundary(clf, feature_bound, ax=ax)
coll_new = list(ax.collections)
coll_new.append(title)
artists.append([x for x in coll_new if (x not in coll_old)])
# Label the queried instances.
y[query_idx] = y_true[query_idx]
ani = animation.ArtistAnimation(fig, artists, interval=1000, blit=True)

References:
The implementation of this strategy is based on Roy and McCallum1.
- 1
Nicholas Roy and Andrew McCallum. Toward optimal active learning through monte carlo estimation of error reduction. In Proceedings of the International Conference on Machine Learning, 441–448. 2001.
Total running time of the script: (2 minutes 29.904 seconds)