Note
Go to the end to download the full example code.
Sub-sampling Wrapper#
Idea: The Sub-sampling Wrapper creates a subset of candidates before computing their utilities. This is useful when the number of available candidates is too large and a small subset of candidates is sufficient to select a good batch for labeling. The number of candidates can be controlled using max_candidates which supports an absolute number or a fraction of the available candidates. Additionally, exclude_non_subsample provides an option to mask all candidates that were not included in the subsample. This can further improve the runtime for query strategies that utilize all available unlabeled data in their selection.
Google Colab Note: If the notebook fails to run after installing the
needed packages, try to restart the runtime (Ctrl + M) under
Runtime -> Restart session.
Notebook Dependencies
Uncomment the following cell to install all dependencies for this
tutorial.
# !pip install scikit-activeml
import numpy as np
from matplotlib import pyplot as plt, animation
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from skactiveml.utils import MISSING_LABEL, labeled_indices
from skactiveml.visualization import plot_utilities, plot_decision_boundary
from skactiveml.classifier import ParzenWindowClassifier
from skactiveml.pool import SubSamplingWrapper, UncertaintySampling
random_state = np.random.RandomState(0)
# Build a dataset.
X_true, y_clusters = make_blobs(
n_samples=400,
n_features=2,
centers=[[0, 1], [-3, 0.5], [-1, -1], [2, 1], [1, -0.5]],
cluster_std=0.7,
random_state=random_state,
)
y_true = y_clusters % 2
X_pool, X_test, y_pool, y_test = train_test_split(
X_true, y_true, test_size=0.25, random_state=random_state
)
X = X_pool
y = np.full(shape=y_pool.shape, fill_value=MISSING_LABEL)
# Initialise the classifier.
clf = ParzenWindowClassifier(classes=[0, 1], random_state=random_state)
# Initialise the query strategy.
qs = SubSamplingWrapper(
query_strategy=UncertaintySampling(),
max_candidates=0.5
)
# Preparation for plotting.
fig, ax = plt.subplots()
feature_bound = [
[min(X[:, 0]), min(X[:, 1])],
[max(X[:, 0]), max(X[:, 1])]
]
artists = []
# Active learning cycle:
n_cycles = 20
for c in range(n_cycles):
# Fit the classifier with current labels.
clf.fit(X, y)
# Query the next sample(s).
query_idx = qs.query(X=X, y=y, clf=clf)
# Capture the current plot state.
coll_old = list(ax.collections)
title = ax.text(
0.5, 1.05,
f"Decision boundary after acquiring {c} labels\n"
f"Test Accuracy: {clf.score(X_test, y_test):.4f}",
size=plt.rcParams["axes.titlesize"],
ha="center", transform=ax.transAxes,
)
# Update plot with utility values, samples, and decision boundary.
X_labeled = X[labeled_indices(y)]
ax = plot_utilities(
qs,
X=X, y=y, clf=clf,
candidates=X,
res=25,
feature_bound=feature_bound,
ax=ax,
)
ax.scatter(
X[:, 0],
X[:, 1],
c=y_pool,
cmap="coolwarm",
marker=".",
zorder=2
)
ax.scatter(
X_labeled[:, 0],
X_labeled[:, 1],
c="grey",
alpha=0.8,
marker=".",
s=300,
)
ax = plot_decision_boundary(clf, feature_bound, ax=ax)
ax.set_xlabel('Feature 1')
ax.set_ylabel('Feature 2')
coll_new = list(ax.collections)
coll_new.append(title)
artists.append([x for x in coll_new if x not in coll_old])
# Update labels based on query.
y[query_idx] = y_pool[query_idx]
ani = animation.ArtistAnimation(fig, artists, interval=1000, blit=True)
Total running time of the script: (0 minutes 5.696 seconds)