skactiveml.utils.labeled_indices#
- skactiveml.utils.labeled_indices(y, missing_label=nan)[source]#
Return an array of indices indicating present labels.
- Parameters
- yarray-like, shape (n_samples,) or (n_samples, n_outputs)
Class labels to be checked w.r.t. to present labels.
- missing_labelnumber or str or None or np.nan, default=np.nan
Value to represent a missing label.
- Returns
- lbld_indicesnumpy.ndarray of shape (n_samples) or (n_samples, 2)
Index array of present labels. If y is a 2D-array, the indices have shape (n_samples, 2), otherwise it has the shape `(n_samples).
Examples using skactiveml.utils.labeled_indices
#

Batch Active Learning by Diverse Gradient Embedding (BADGE)
Batch Active Learning by Diverse Gradient Embedding (BADGE)

Batch Bayesian Active Learning by Disagreement (BatchBALD)
Batch Bayesian Active Learning by Disagreement (BatchBALD)

Fast Active Learning by Contrastive UNcertainty (FALCUN)
Fast Active Learning by Contrastive UNcertainty (FALCUN)

Batch Density-Diversity-Distribution-Distance Sampling
Batch Density-Diversity-Distribution-Distance Sampling

Query-by-Committee (QBC) with Kullback-Leibler Divergence
Query-by-Committee (QBC) with Kullback-Leibler Divergence