skactiveml.pool.expected_average_precision#
- skactiveml.pool.expected_average_precision(classes, probas)[source]#
Calculate the expected average precision [1].
- Parameters
- classesarray-like, shape=(n_classes,)
Holds the label for each class.
- probasarray-like of shape (n_samples, n_classes)
Class membership probabilities for each sample.
- Returns
- scorenp.ndarray of shape=(n_samples,)
The expected average precision score of all samples in candidates.
References
- 1
H. Wang, X. Chang, L. Shi, Y. Yang, and Y.-D. Shen. Uncertainty Sampling for Action Recognition via Maximizing Expected Average Precision. In Int. Jt. Conf. Artif. Intell., pages 964–970, 2018.