skactiveml.utils.compute_vote_vectors#

skactiveml.utils.compute_vote_vectors(y, w=None, classes=None, missing_label=nan)[source]#

Counts number of votes per class label for each sample.

Parameters
yarray-like, shape (n_samples) or (n_samples, n_annotators)

Class labels, which may contain also missing labels.

warray-like, shape (n_samples) or (n_samples, n_annotators) or None, default=None

Class label weights. If the weights are None, weights are assumed to be equal for every sample.

classesarray-like of shape (n_classes,), default=None

Holds the label for each class.

missing_labelscalar or string or np.nan orNone, default=np.nan

Value to represent a missing label.

Returns
vnumpy.ndarray of shape (n_samples, n_classes)

V[i,j] counts number of votes per class j for sample i.