SlidingWindowClassifier#
- class skactiveml.classifier.SlidingWindowClassifier(estimator, classes=None, missing_label=nan, cost_matrix=None, window_size=None, only_labeled=False, random_state=None)[source]#
Bases:
SkactivemlClassifier,MetaEstimatorMixinSliding Window Classifier
Implementation of a wrapper class for SkactivemlClassifier such that the number of training samples can be limited to the latest window_size samples. Furthermore, saves X, y and sample_weight, enabling the use of a partial_fit for any classifier.
- Parameters:
- estimatorsklearn.base.SkactivemlClassifier
The classifier to be wrapped. If this classifier already implements a partial_fit, this method will be overwritten by this wrapper using the sliding window approach.
- classesarray-like of shape (n_classes,), default=None
Holds the label for each class. If None, classes are determined during the fit.
- missing_labelscalar or string or np.nan or None, default=np.nan
Value to represent a missing label.
- cost_matrixarray-like of shape (n_classes, n_classes)
Cost matrix with cost_matrix[i,j] indicating cost of predicting class classes[j] for a sample of class classes[i]. Can be only set, if classes is not none.
- window_sizeint, default=None,
Value to represent the estimator sliding window size for X, y and sample weight. If None the window is unrestricted in its size.
- only_labeledbool, default=False
If True, unlabeled samples are discarded.
- random_stateint or RandomState instance or None, default=None
Determines random number for predict method. Pass an int for reproducible results across multiple method calls.
Methods
fit(X, y[, sample_weight])Fit the model using X as training data and y as class labels.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
partial_fit(X, y[, sample_weight])Partially fitting the model using X as training data and y as class labels.
predict(X, **predict_kwargs)Return class label predictions for the input data X.
predict_freq(X, **predict_freq_kwargs)Return class frequency estimates for the test samples X.
predict_proba(X, **predict_proba_kwargs)Return probability estimates for the input data X.
score(X, y[, sample_weight])Return the mean accuracy on the given test data and labels.
set_fit_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
fitmethod.set_params(**params)Set the parameters of this estimator.
set_partial_fit_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
partial_fitmethod.set_score_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
scoremethod.- fit(X, y, sample_weight=None, **fit_kwargs)[source]#
Fit the model using X as training data and y as class labels.
- Parameters:
- Xarray-like of shape (n_samples, …)
The feature matrix representing the samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
It contains the class labels of the training samples. Missing labels are represented the attribute self.missing_label_. In case of multiple labels per sample (i.e., n_outputs > 1), the samples are duplicated.
- sample_weightarray-like of shape (n_samples,) or (n_samples, n_outputs)
It contains the weights of the training samples’ class labels. It must have the same shape as y.
- fit_kwargsdict-like
Further parameters as input to the fit method of the estimator.
- Returns:
- self: SlidingWindowClassifier,
The SlidingWindowClassifier is fitted on the training data.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- partial_fit(X, y, sample_weight=None, **fit_kwargs)[source]#
Partially fitting the model using X as training data and y as class labels. If base_estimator has no partial_fit function use fit with the sliding window for X, y and sample_weight.
- Parameters:
- Xarray-like of shape (n_samples, …)
The feature matrix representing the samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
It contains the class labels of the training samples. Missing labels are represented the attribute self.missing_label_. In case of multiple labels per sample (i.e., n_outputs > 1), the samples are duplicated.
- sample_weightarray-like of shape (n_samples,) or (n_samples, n_outputs)
It contains the weights of the training samples’ class labels. It must have the same shape as y.
- fit_kwargsdict-like
Further parameters as input to the fit method of the estimator.
- Returns:
- selfSlidingWindowClassifier,
The SlidingWindowClassifier is fitted on the training data.
- predict(X, **predict_kwargs)[source]#
Return class label predictions for the input data X.
- Parameters:
- Xarray-like of shape (n_samples, …)
Input samples.
- predict_kwargsdict-like
Further parameters as input to the predict method of the estimator.
- Returns:
- y_prednumpy.ndarray shape (n_samples,)
Predicted class labels of the input samples.
- predict_freq(X, **predict_freq_kwargs)[source]#
Return class frequency estimates for the test samples X.
- Parameters:
- Xarray-like of shape (n_samples, …)
Test samples whose class frequencies are to be estimated.
- Returns:
- Fnumpy.ndarray of shape (n_samples, classes)
The class frequency estimates of the test samples X. Classes are ordered according to the attribute self.classes_.
- predict_proba(X, **predict_proba_kwargs)[source]#
Return probability estimates for the input data X.
- Parameters:
- Xarray-like of shape (n_samples, …)
Input samples.
- predict_proba_kwargsdict-like
Further parameters as input to the predict_proba method of the estimator.
- Returns:
- Pnumpy.ndarray shape (n_samples, classes)
The class probabilities of the input samples X. Classes are ordered according to the attribute self.classes_.
- score(X, y, sample_weight=None)#
Return the mean accuracy on the given test data and labels.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples,)
True labels for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns:
- scorefloat
Mean accuracy of self.predict(X) regarding y.
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') SlidingWindowClassifier#
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weightparameter infit.
- Returns:
- selfobject
The updated object.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_partial_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') SlidingWindowClassifier#
Configure whether metadata should be requested to be passed to the
partial_fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed topartial_fitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it topartial_fit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weightparameter inpartial_fit.
- Returns:
- selfobject
The updated object.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') SlidingWindowClassifier#
Configure whether metadata should be requested to be passed to the
scoremethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weightparameter inscore.
- Returns:
- selfobject
The updated object.