skactiveml.pool.cost_reduction#
- skactiveml.pool.cost_reduction(k_vec_list, C=None, m_max=2, prior=0.001)[source]#
Calculate the expected cost reduction.
Calculate the expected cost reduction for given maximum number of hypothetically acquired labels, observed labels and cost matrix.
- Parameters
- k_vec_listarray-like of shape (n_samples, n_classes)
Observed class labels.
- Carray-like of shape (n_classes, n_classes), default=None
Cost matrix.
- m_maxint
Maximal number of hypothetically acquired labels.
- priorfloat or array-like of shape (n_classes,)
Prior value for each class.
- Returns
- expected_cost_reduction: array-like, shape (n_samples)
Expected cost reduction for given parameters.