skactiveml.pool.Quire#

class skactiveml.pool.Quire(classes, lmbda=1.0, metric='rbf', metric_dict=None, missing_label=nan, random_state=None)[source]#

Bases: SingleAnnotatorPoolQueryStrategy

QUerying Informative and Representative Examples (QUIRE)

Implementation of the AL strategy “QUerying Informative and Representative Examples” (QUIRE) [1].

Parameters
classesarray-like of shape (n_classes)

Array of class labels.

lmbdafloat, default=1.0

Controls informativeness (high) and representativeness (low). Values must be greater than 0.

metricstr or callable, default=’rbf’

The metric must be a valid kernel defined by the function sklearn.metrics.pairwise.pairwise_kernels or ‘precomputed’.

metric_dictdict, default=None

Any further parameters are passed directly to the metric function.

missing_labelscalar or string or np.nan or None, default=MISSING_LABEL

Value to represent a missing label.

random_stateint or np.random.RandomState, default=None

The random state to use.

References

1

S.-J. Huang, R. Jin, and Z.-H. Zhou. Active Learning by Querying Informative and Representative Examples. In Adv. Neural Inf. Process. Syst., 2010.

Methods

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

query(X, y[, candidates, batch_size, ...])

Determines for which candidate samples labels are to be queried.

set_params(**params)

Set the parameters of this estimator.

Attributes

METRICS

METRICS = ['additive_chi2', 'chi2', 'cosine', 'linear', 'poly', 'polynomial', 'rbf', 'laplacian', 'sigmoid', 'precomputed']#
get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)#

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

query(X, y, candidates=None, batch_size=1, return_utilities=False)[source]#

Determines for which candidate samples labels are to be queried.

Parameters
Xarray-like of shape (n_samples, n_features)

Training data set, usually complete, i.e., including the labeled and unlabeled samples.

yarray-like of shape (n_samples,)

Labels of the training data set (possibly including unlabeled ones indicated by self.missing_label).

candidatesNone or array-like of shape (n_candidates), dtype=int or array-like of shape (n_candidates, n_features), default=None
  • If candidates is None, the unlabeled samples from (X,y) are considered as candidates.

  • If candidates is of shape (n_candidates,) and of type int, candidates is considered as the indices of the samples in (X,y).

batch_sizeint, default=1

The number of samples to be selected in one AL cycle.

return_utilitiesbool, default=False

If True, also return the utilities based on the query strategy.

Returns
query_indicesnumpy.ndarray of shape (batch_size)

The query indices indicate for which candidate sample a label is to be queried, e.g., query_indices[0] indicates the first selected sample. The indexing refers to the samples in X.

utilitiesnumpy.ndarray of shape (batch_size, n_samples) or numpy.ndarray of shape (batch_size, n_candidates)

The utilities of samples after each selected sample of the batch, e.g., utilities[0] indicates the utilities used for selecting the first sample (with index query_indices[0]) of the batch. Utilities for labeled samples will be set to np.nan. The indexing refers to the samples in X.

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfestimator instance

Estimator instance.

Examples using skactiveml.pool.Quire#

Querying Informative and Representative Examples

Querying Informative and Representative Examples