SkactivemlRegressor#
- class skactiveml.base.SkactivemlRegressor(missing_label=nan, random_state=None)[source]#
Bases:
RegressorMixin,BaseEstimator,ABCSkactiveml Regressor
Base class for scikit-activeml regressors.
Parameters#
- missing_labelscalar, string, np.nan, or None, default=np.nan
Value to represent a missing label.
- random_stateint, RandomState or None, default=None
Determines random number for fit and predict method. Pass an int for reproducible results across multiple method calls.
Methods
fit(X, y[, sample_weight])Fit the model using X as training data and y as numerical labels.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
predict(X)Return value predictions for the test samples X.
score(X, y[, sample_weight])Return coefficient of determination on test data.
set_fit_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
fitmethod.set_params(**params)Set the parameters of this estimator.
set_score_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
scoremethod.- abstract fit(X, y, sample_weight=None)[source]#
Fit the model using X as training data and y as numerical labels.
- Parameters:
- Xmatrix-like of shape (n_samples, n_features)
The sample matrix X is the feature matrix representing the samples.
- yarray-like, shape (n_samples) or (n_samples, n_targets)
It contains the labels of the training samples. The number of numerical labels may be variable for the samples, where missing labels are represented as missing_label_.
- sample_weightarray-like, shape (n_samples)
It contains the weights of the training samples’ values.
- Returns:
- self: skactiveml.base.SkactivemlRegressor,
The skactiveml.base.SkactivemlRegressor object fitted on the training data.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- abstract predict(X)[source]#
Return value predictions for the test samples X.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- Returns
- ——-
- ynumpy.ndarray of shape (n_samples,)
Predicted values of the test samples X.
- score(X, y, sample_weight=None)#
Return coefficient of determination on test data.
The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
- Xarray-like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator.- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True values for X.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns:
- scorefloat
\(R^2\) of
self.predict(X)w.r.t. y.
Notes
The \(R^2\) score used when calling
scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score(). This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
- set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') SkactivemlRegressor#
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weightparameter infit.
- Returns:
- selfobject
The updated object.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') SkactivemlRegressor#
Configure whether metadata should be requested to be passed to the
scoremethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weightparameter inscore.
- Returns:
- selfobject
The updated object.
Examples using skactiveml.base.SkactivemlRegressor#
Regression based Kullback Leibler Divergence Maximization
Regression Tree Based Active Learning (RT-AL) with Diversity Selection
Regression Tree Based Active Learning (RT-AL) with Random Selection
Regression Tree Based Active Learning (RT-AL) with Representativity Selection