skactiveml.pool.expected_average_precision#
- skactiveml.pool.expected_average_precision(classes, probas)[source]#
Calculate the expected average precision.
- Parameters
- classesarray-like, shape=(n_classes)
Holds the label for each class.
- probasnp.ndarray, shape=(n_X_cand, n_classes)
The probabilistic estimation for each classes and all instance in candidates.
- Returns
- scorenp.ndarray, shape=(n_X_cand)
The expected average precision score of all instances in candidates.
References
- [1] Wang, Hanmo, et al. “Uncertainty sampling for action recognition
via maximizing expected average precision.” IJCAI International Joint Conference on Artificial Intelligence. 2018.