skactiveml.stream.Split#
- class skactiveml.stream.Split(budget_manager=None, budget=None, random_state=None)[source]#
Bases:
UncertaintyZliobaite
The Split [1] query strategy samples in 100*v% of instances randomly and in 100*(1-v)% of cases according to VariableUncertainty.
- Parameters
- budgetfloat, optional (default=None)
The budget which models the budgeting constraint used in the stream-based active learning setting.
- budgetmanagerBudgetManager, optional (default=None)
The BudgetManager which models the budgeting constraint used in the stream-based active learning setting. if set to None, SplitBudgetManager will be used by default. The budget manager will be initialized based on the following conditions:
If only a budget is given the default budget manager is initialized with the given budget. If only a budgetmanager is given use the budgetmanager. If both are not given the default budgetmanager with the default budget. If both are given and the budget differs from budgetmanager.budget a warning is thrown.
- random_stateint, RandomState instance, optional (default=None)
Controls the randomness of the estimator.
References
- [1] Žliobaitė, I., Bifet, A., Pfahringer, B., & Holmes, G. (2014). Active
Learning With Drifting Streaming Data. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 27-39.
Methods
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
query
(candidates, clf[, X, y, ...])Ask the query strategy which instances in candidates to acquire.
set_params
(**params)Set the parameters of this estimator.
update
(candidates, queried_indices[, ...])Updates the budget manager and the count for seen and queried instances
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
- query(candidates, clf, X=None, y=None, sample_weight=None, fit_clf=False, return_utilities=False)#
Ask the query strategy which instances in candidates to acquire.
- Parameters
- candidates{array-like, sparse matrix} of shape
- (n_samples, n_features)
The instances which may be queried. Sparse matrices are accepted only if they are supported by the base query strategy.
- clfSkactivemlClassifier
Model implementing the methods fit and predict_freq.
- Xarray-like of shape (n_samples, n_features), optional
- (default=None)
Input samples used to fit the classifier.
- yarray-like of shape (n_samples), optional (default=None)
Labels of the input samples ‘X’. There may be missing labels.
- sample_weightarray-like of shape (n_samples,), optional
- (default=None)
Sample weights for X, used to fit the clf.
- fit_clfbool, optional (default=False)
If true, refit the classifier also requires X and y to be given.
- return_utilitiesbool, optional (default=False)
If true, also return the utilities based on the query strategy. The default is False.
- Returns
- queried_indicesndarray of shape (n_queried_instances,)
The indices of instances in candidates which should be queried, with 0 <= n_queried_instances <= n_samples.
- utilities: ndarray of shape (n_samples,), optional
The utilities based on the query strategy. Only provided if return_utilities is True.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.
- update(candidates, queried_indices, budget_manager_param_dict=None)#
Updates the budget manager and the count for seen and queried instances
- Parameters
- candidates{array-like, sparse matrix} of shape
- (n_samples, n_features)
The instances which could be queried. Sparse matrices are accepted only if they are supported by the base query strategy.
- queried_indicesarray-like of shape (n_samples,)
Indicates which instances from candidates have been queried.
- budget_manager_param_dictkwargs, optional (default=None)
Optional kwargs for budget manager.
- Returns
- selfUncertaintyZliobaite
The UncertaintyZliobaite returns itself, after it is updated.