skactiveml.pool.multiannotator.IntervalEstimationAnnotModel#
- class skactiveml.pool.multiannotator.IntervalEstimationAnnotModel(classes=None, missing_label=nan, alpha=0.05, mode='upper', random_state=None)[source]#
Bases:
BaseEstimator
,AnnotatorModelMixin
This annotator model relies on ‘Interval Estimation Learning’ (IELearning) for estimating the annotation performances, i.e., labeling accuracies, of multiple annotators [1]. Therefore, it computes the mean accuracy and the lower as well as the upper bound of the labeling accuracy per annotator. (Weighted) majority vote is used as estimated ground truth.
- Parameters
- classesarray-like, shape (n_classes), optional (default=None)
Holds the label for each class.
- missing_labelscalar or string or np.nan or None, optional
- (default=np.nan)
Value to represent a missing label.
- alphafloat, interval=(0, 1), optional (default=0.05)
Half of the confidence level for student’s t-distribution.
- mode‘lower’ or ‘mean’ or ‘upper’, optional (default=’upper’)
Mode of the estimated annotation performance.
- random_stateNone|int|numpy.random.RandomState, optional (default=None)
The random state used for deciding on majority vote labels in case of ties.
References
- [1] Donmez, Pinar, Jaime G. Carbonell, and Jeff Schneider.
“Efficiently learning the accuracy of labeling sources for selective sampling.” 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259-268. 2009.
- Attributes
- n_annotators_: int
Number of annotators.
- A_perf_ndarray, shape (n_annotators, 3)
Estimated annotation performances (i.e., labeling accuracies), where A_cand[i, 0] indicates the lower bound, A_cand[i, 1] indicates the mean, and A_cand[i, 2] indicates the upper bound of the estimation labeling accuracy.
Methods
fit
(X, y[, sample_weight])Fit annotator model for given samples.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
Calculates the probability that an annotator provides the true label for a given sample.
set_fit_request
(*[, sample_weight])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
- fit(X, y, sample_weight=None)[source]#
Fit annotator model for given samples.
- Parameters
- Xarray-like, shape (n_samples, n_features)
Test samples.
- yarray-like, shape (n_samples, n_annotators)
Class labels of annotators.
- sample_weightarray-like, shape (n_samples, n_annotators),
- optional (default=None)
Sample weight for each label and annotator.
- Returns
- selfIntervalEstimationAnnotModel object
The fitted annotator model.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
- paramsdict
Parameter names mapped to their values.
- predict_annotator_perf(X)[source]#
Calculates the probability that an annotator provides the true label for a given sample.
- Parameters
- Xarray-like, shape (n_samples, n_features)
Test samples.
- Returns
- P_annotnumpy.ndarray, shape (n_samples, n_annotators)
P_annot[i,l] is the probability, that annotator l provides the correct class label for sample X[i].
- set_fit_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') IntervalEstimationAnnotModel #
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter infit
.
- Returns
- selfobject
The updated object.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
Estimator parameters.
- Returns
- selfestimator instance
Estimator instance.